
General and Specific Combining Abilities
Facundo Muñoz

2017-04-14 breedR version: 0.12.1

Contents

In a factorial design (either complete or not) the General Combining Ability (GCA) of a parent is its Breeding

Value, while the Specific Combinig Ability (SCA) of a mating is the additional genetic value due to the
interaction between those particular genotypes.

We propose two alternative ways of getting BLUPs for the GCAs. While for the SCAs we will simply use
an unstructured random effect with one level for each observed mating.

We illustrate the methods with the following simulated data. Note that in this example the males and females
are different individuals (and thus, they have different codes). However, monoic species can be set up as
diallels, which simply means that some or all of the codes (and GCAs) will be shared. Otherwise, the methods
still apply.

Note also that while the GCAs are sampled using the base population’s additive-genetic variance, the
intra-family breeding values are sampled with half-that variance. This is standard theory.

Setup

library(breedR)

library(ggplot2)

set.seed(123)

Simulation parameters

n.parents <- c(male = 15L,

female = 10L)

n.matings <- 100

n.replicates <- 40

mu = 10 # Intercept

sigma2_g <- 6 # Genetic variance of the base population

sigma2_s <- 1 # Variance of the SCA

sigma2_e <- 1 # Residual variance

Generate all crosses and sample a subset

parents.codes <- list(male = seq.int(n.parents['male']),

female = n.parents['male'] + seq.int(n.parents['female']))

matings <- expand.grid(parents.codes)

matings <- matings[sample(prod(n.parents), n.matings),]

rownames(matings) <- with(matings, paste(male, female, sep = 'x'))

Simulated values

GCA = sapply(do.call('c', parents.codes),

function(x) rnorm(1, mean = 0, sd = sqrt(sigma2_g)))

SCA = sapply(rownames(matings),

function(x) rnorm(1, mean = 0, sd = sqrt(sigma2_s)))

Expected phenotype per family

eta.family <- mu + SCA + (GCA[matings$male] + GCA[matings$female])/2

Realised Breeding Values in the progeny

1

(intra-family variance = half genetic variance)

n.progeny <- n.replicates*n.matings

eta.realised <- eta.family + rnorm(n.progeny, sd = sqrt(sigma2_g/2))

dat <- data.frame(Id = max(sapply(parents.codes, max)) + seq.int(n.progeny),

rep = rep(seq.int(n.replicates), each = n.matings),

matings,

eta.realised,

y = eta.realised + rnorm(n.progeny, sd = sqrt(sigma2_e)))

Define variable for the non-additive SCA

dat <- transform(dat,

SCA = factor(paste(male, female, sep = 'x'),

levels = rownames(matings)))

Printing simulated setting

print(table(dat[, c('male', 'female')]), zero.print = "")

female

male 16 17 18 19 20 21 22 23 24 25

1 40 40 40 40 40 40

2 40 40 40 40 40 40

3 40 40 40 40 40 40 40 40

4 40 40 40 40 40 40

5 40 40 40 40 40 40 40

6 40 40 40 40 40

7 40 40 40 40 40 40 40

8 40 40 40 40 40 40 40 40

9 40 40 40 40 40 40

10 40 40 40 40 40 40 40 40 40

11 40 40 40 40 40 40 40 40

12 40 40 40 40 40 40

13 40 40 40 40

14 40 40 40 40 40 40 40 40

15 40 40 40 40 40 40

str(dat)

'data.frame': 4000 obs. of 7 variables:

$ Id : int 26 27 28 29 30 31 32 33 34 35 ...

$ rep : int 1 1 1 1 1 1 1 1 1 1 ...

$ male : int 14 13 1 10 3 7 2 8 4 5 ...

$ female : int 18 23 20 24 25 16 21 24 21 20 ...

$ eta.realised: num 7.94 10.6 12.14 10.33 8.17 ...

$ y : num 8.73 11.6 12.52 11.44 7.2 ...

$ SCA : Factor w/ 100 levels "14x18","13x23",..: 1 2 3 4 5 6 7 8 9 10 ...

Method 1: using unstructured random effects

The first method uses two independent unstructured random effects for the GCAs of the mother and the
father trees respectively.

Note that remlf90 will estimate two independent variances for these effects, while in reality they are the
same. However, we currently do not have a way to specify that in breedR. It will be possible soon, when we

2

implement the generic model. Therefore, this approach is currently sub-efficient.

Furthermore, the female and male effects represent actually half of the Breeding Value contributed by both
parents. So their variance is a quarter of the base population’s additive-genetic variance. We will then use
four times the mean of both estimates as an estimate of the additive-genetic variance.

Note that I would like to estimate only **one** GCA effect

However, currently I need to specify two independent random effects with

two independent variances, which account in reality for the same thing

res <- remlf90(y ~ 1,

random = ~ male + female + SCA,

dat = transform(dat,

male = factor(male),

female = factor(female)))

Using default initial variances given by default_initial_variance()

See ?breedR.getOption.

Here, the effects 'female' and 'male' are both estimating GCA/2

therefore, their variances are Var(GCA)/4 = sigma_g/4

So, a point estimator for sigma_g would be:

(sigma_g.est <- 4 * mean(res$var[c('female', 'male'), 1]))

[1] 5.5054

while the BLUPs

PGCA <- c(ranef(res)$male, ranef(res)$female)

Check fit

qplot(dat$eta, fitted(res)) + geom_abline(intercept=0, slope=1)

7.5

10.0

12.5

15.0

5 10 15

dat$eta

fit
te

d(
re

s)

qplot(GCA, PGCA) + geom_abline(intercept=0, slope=1)

3

https://github.com/famuvie/breedR/issues/23

−2

−1

0

1

2

−6 −3 0 3

GCA

P
G

C
A

qplot(SCA, ranef(res)$SCA) + geom_abline(intercept=0, slope=1)

−1

0

1

2

3

−2 −1 0 1 2 3

SCA

ra
ne

f(
re

s)
$S

C
A

summary(res)

Formula: y ~ 0 + Intercept + male + female + SCA

Data: transform(dat, male = factor(male), female = factor(female))

AIC BIC logLik

17152 17177 -8572

##

Parameters of special components:

##

##

Variance components:

Estimated variances S.E.

male 1.0514 0.46682

female 1.7013 0.86324

SCA 0.9908 0.17669

Residual 3.9535 0.08953

4

##

Fixed effects:

value s.e.

Intercept 10.05 0.5018

Method 2: using the implicit pedigree

With this approach we estimate directly the genetic variance of the base population, and predict the Breeding
Values of all individuals, including the parents (i.e. the GCAs).

The SCAs are again fitted as an unstructured random effect.

res.add <- remlf90(y ~ 1,

random = ~ SCA,

genetic = list(model = 'add_animal',

pedigree = dat[, c('Id', 'male', 'female')],

id = 'Id'),

dat = dat)

Using default initial variances given by default_initial_variance()

See ?breedR.getOption.

Check fit

qplot(dat$eta, fitted(res.add)) + geom_abline(intercept=0, slope=1)

5

10

15

5 10 15

dat$eta

fit
te

d(
re

s.
ad

d)

Predicted GCAs for the parents

PGCA.add <- ranef(res.add)$genetic[do.call('c', parents.codes)]

qplot(GCA, PGCA.add) + geom_abline(intercept=0, slope=1)

5

−4

−2

0

2

4

−6 −3 0 3

GCA

P
G

C
A

.a
dd

Predicted SCAs for the families

qplot(SCA, ranef(res.add)$SCA) + geom_abline(intercept=0, slope=1)

−1

0

1

2

3

−2 −1 0 1 2 3

SCA

ra
ne

f(
re

s.
ad

d)
$S

C
A

summary(res)

Formula: y ~ 0 + Intercept + male + female + SCA

Data: transform(dat, male = factor(male), female = factor(female))

AIC BIC logLik

17152 17177 -8572

##

Parameters of special components:

##

##

Variance components:

Estimated variances S.E.

male 1.0514 0.46682

female 1.7013 0.86324

SCA 0.9908 0.17669

6

Residual 3.9535 0.08953

##

Fixed effects:

value s.e.

Intercept 10.05 0.5018

Final remarks

• You can derive point estimates of Heritabilities using the resulting variance estimates

• The GCA and SCA BLUPs can be extracted with the ranef expressions above

• Note that the log-likelihood of both models is exactly the same, while AIC penalizes slightly the first
approach because it has one extra parameter.

7

