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Introduction

Heritability is usually a desired outcome whenever a genetic component is involved in a model. There are
three alternative ways for computing it.

1. Simulation from the asymptotic distribution (Meyer and Houle, 2013)
2. Delta Method (Oehlert, 1992)
3. Bootstrap estimation (Effron and Tibshirani, 1993; Davison and Hinkley, 1997)

Not all are possible under all circumstances. Moreover, each one bears different degrees of approximation. The
Bootstrap estimation (3) is the most reliable, but the most difficult to use in practice. Simulating from the
asymptotic distribution (1) is the default approach, and gives a reasonable approximation whenever N is large
and the variance components are not too small. The Delta Method (3) implies yet another approximation on
top of the asymptotic assumption, and is to be used as a last resource.

Case 1: Explicit genetic component with method = 'ai'

This is the easiest case. breedR computes and returns the heritability automatically as
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where 02 is the additive-genetic variance and ¢% is the phenotypic variance, computed as the sum of all the
variance components in the model.

res.animal <- remlf90(fixed = phe X ~ 1,
random = ~ gg,
genetic = list(model = 'add_animal',

pedigree = globulus[, 1:3],
id = 'self'),
data = globulus)
summary (res.animal)



## Formula: phe_X ~ O + Intercept + gg + pedigree
## Data: globulus
##  AIC BIC loglik
## 5857 5872 -2926

#it

## Parameters of special components:
#i#

##

## Variance components:

## Estimated variances S.E.
## gg 2.356 1.249
## genetic 3.632 1.649
## Residual 14.271 1.561
#i#

## Estimate S.E.

## Heritability 0.1795 0.08253

#i#

## Fixed effects:

## value s.e.

## Intercept 14.797 0.47

The heritability is shown automatically in the summary() along with its standard error. In this case, the
formula used was genetic/(gg+genetic+Residual)‘.

The calculation method is by simulation from the asymptotic Gaussian joint sampling distribution of the
variance components. The approximation makes use of the Average Information matrix, and therefore can
only be used when method = 'ai'.

In summary, there are two requirements for this approach to work:
e method = 'ai'
o explicit genetic component in the model

Note that a progeny trial with a specific genetic structure can be fitted in this way by manually building
the pedigree.

For instance, for a half-sib family structure, you can use the family code as a fictitious mother in a pedigree,
and use NA for the fathers.

Case 2: Using custom heritability formulae

Under some circumstances, you need to use an alternative formulation for the heritability. For example,
you might want to exclude the spatial variance from the denominator, in order to compare the heritability
estimates from different sites (with potentially different spatial variances).

You have two alternative approaches for this:
1. Specifying the formula using the option se_covar_function in the argument progsf90.options.

2. Using the Delta Method with the inverse Average-Information matrix.

2.1 Specifying and explicit function of the variance components

The methodology is the same as in Case 1 (i.e. simulation from the asymptotic joint distribution), but with a
different formula.


https://en.wikipedia.org/wiki/Delta_method

In this example, I will simulate a half-sib family genetic structure, and use the following formula for the
heritability, which excludes the variance of the random blocks from the denominator:
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globulus <- transform(globulus,
fam = factor(mum, exclude = 0))

h2fml <- '4*%G_3_3_1_1/(G_3_3_1_1+R_1_1)"

res.fml <- remlf90(fixed phe_X ~ gg,
random = ~ bl + fam,
progsf90.options = paste('se_covar_function h2', h2fml),
data = globulus)

summary (res.fml)

## Formula: phe X ~ 0 + gg + bl + fam
## Data: globulus
## AIC BIC loglLik
## 5677 5692 -2836

#i#

## Parameters of special components:
#i#

#it

## Variance components:

## Estimated variances S.E.
## bl 2.644 1.0793
## fam 1.101 0.4187
## Residual 14.391 0.6642
#it

## Estimate S.E.
## h2 0.2823 0.1039

##

## Fixed effects:

## value s.e.
## gg.1 13.533 0.6157
## gg.2 14.027 0.8311
## gg.3 16.116 0.6618
## gg.4 11.863 0.8546
## gg.5 15.885 0.7221
## gg.6 10.211 1.6500
## gg.7 13.995 1.4954
## gg.8 15.694 0.6422
## gg.9 16.474 0.7308
## gg.10 12.845 1.0978
## gg.11 16.723 0.7603
## gg.12 16.922 1.0493
## gg.13 16.297 1.4954
## gg.14 14.424 0.5262

The formula h2fml needs to be written without spaces and includes random effects (G) and the residual
variances (R). More specifically, G_3_3_1_1 means: the variance of the third effect in the model for the first
trait, while R_1_1 stands for the residual variance for the first trait.



Since breedR for the moment supports single trait models only, the last two numbers for all the terms in the
formula will always be 1. For the effect numbers count fixed effects also: gg (1), bl (2), fam (3).

For more details, see the se_covar_function option in the AIREMLF90 manual.

2.2 Using the Delta Method

This method uses a second-order Taylor expansion of the function of the variance components (i.e. the
formula for the heritability) about its mean, and then takes variances. Assuming the Gaussian asymptotic
distribution, the covariance matrix is given by the inverse Average-Information matrix.

This matrix can be recovered from a breedR result (as long as method = 'ai' has been used) as follows:
(invAI <- res.fml$reml$invAI)

## bl fam resid
## bl 1.1648000 0.002172 -0.0070802
## fam 0.0021720 0.175290 -0.0325110
## resid -0.0070802 -0.032511 0.4411100

Note that the square root of this matrix’s diagonal gives the Standard Errors reported in the previous
summary for the variance componens.

sqrt(diag(invAI))

## bl fam resid
## 1.0792590 0.4186765 0.6641611

You can use the R package msm to handle the differentiation details for you.

if (require(msm, quietly = TRUE)) {

h2hat <- with(as.list(res.fml$var[, "Estimated variances"]),
4xfam/(fam+Residual))
h2se <- deltamethod(~ 4*x2/(x2+x3),
res.fml$var[, "Estimated variances"],
invAI)
cat(pasteO('Heritability (delta method): ',
round (h2hat, 2), ' (',
round(h2se, 2), ')'))
}

## Heritability (delta method): 0.28 (0.1)

I think there is currently little reason for using this method, as 2.1 is feasible under the same conditions, and
is always preferable.

Case 3: Using Bootstrap estimation

Bootstrap estimation is computationally expensive, since it needs to fit the same model many times, and
more statistically involved. But is the best option if you can afford it:

o available under all circumstances (even with EM-REML)
o makes no assumptions about the sampling distribution of the variance components

Moreover, it is the only option available to compute heritability in genetic competition or spatial splines
models, which require method = 'em' and therefore there is no access to the Average-Information matrix.


http://nce.ads.uga.edu/wiki/doku.php?id=readme.aireml#options
https://cran.r-project.org/web/packages/msm/index.html

Furthermore, for models where the spatial arrangement matters (such as competition or splines), taking
subsamples may not be a good idea. The sampling distribution of the variance component REML estimates
will likely be wider for sparsely arranged subsamples of your data.

In these cases, rather than resampling from your data, it is better to simulate full datasets from the fitted
model.

For computational reasons, I will illustrate with a toy example. For competition or splines models, however,
consider parallelization of this code (see R-package parallel and/or ?remote capabilities in breedR)

Step 1: Fit the model to your data

I use AIREML here in order to make it faster. Note that with EMREML you would not have any estimate of
the Standard Errors. Not to mention the heritability and its S.E.

globulus <- transform(globulus,
fam = factor(mum, exclude = 0))

res <- remlf90(fixed = phe X ~ 1,
random = ~ bl + fam,
data = globulus)

Step 2: write a function to simulate data from your fitted model

You can leverage breedR.sample.phenotype().

resample_globulus <- function(N = 1, fit = res) {

dat <- breedR.sample.phenotype (
fixed = 1,
random = list(bl = list(nlevels = 15,
sigma2 = fit$var['bl', 1]),
list(nlevels = 63,
sigma2 = fit$var['fam', 11)),
residual.variance = fit$var['Residual', 1],
N = nrow(model.frame(fit))

fam

)

# rename wvariables to keep the original names
names (dat) <- gsub("rnd\\.", "", names(dat))
return(dat)

}

Step 3: write a function to fit a simulated dataset and extract the target values

sim_target <- function(dat = resample_globulus()) {

## Fit the original model
## avoiding messages about initial variances spec
res <- suppressMessages(
remlf90(fixed = phenotype ~ 1,
random = ~ bl + fam,
data = dat)

## Extract point estimates of all variances
## and point estimate of heritability



ans <- res$var[, 'Estimated variances']
ans <- c(ans, h2 = unname(4*ans['fam']/sum(ans)))

return(ans)

}

Repeated calls to this function will return different estimates, even though the data generating process is the
same.

sim_target ()

## bl fam Residual h2
## 2.3239000 3.0598000 15.2250000 0.5938851

sim_target ()

## bl fam Residual h2
## 1.9541000 3.6643000 13.8770000 0.7518286

sim_target ()

## bl fam Residual h2
## 2.665700 2.836100 14.201000 0.575776

The distribution of each these values is known as the sampling distribution, and its standard deviation is
the Standard Error of the corresponding estimators.

To get an idea of these distributions, we need to sample many times

empirical_dist <- as.data.frame(t(replicate(500, sim_target())))
if (require(tidyr, quietly = TRUE)) {

plotdat <- gather(empirical_dist[, 1:3], 'variable', 'value')

gplot(value, data = plotdat, facets = ~ variable)
}
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Figure 1: Approximate sampling distribution of variance components



gplot(h2, data = empirical_dist, xlim = c(0, 1))

## Warning: Removed 2 rows containing non-finite values (stat_bin).
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Figure 2: Approximate sampling distribution of heritability

You can compute Standard Errors and Confidence Intervals from numerical summaries of these distributions.

cat('Standard Errors:\n')
round(sapply(empirical_dist, sd), 2)

## Standard Errors:
## bl fam Residual h2
## 1.08 0.71 0.68 0.12

cat('95%, Confidence Intervals:\n')
round(sapply(empirical_dist, quantile, probs = c(.025,

## 95% Confidence Intervals:

## bl fam Residual h2
## 2.5% 0.82 1.82 13.26 0.38
## 97.5% 4.95 4.51 15.77 0.86
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